Serveur d'exploration sur les pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat.

Identifieur interne : 000257 ( Main/Exploration ); précédent : 000256; suivant : 000258

Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat.

Auteurs : Erena A. Edae [États-Unis] ; Matthew N. Rouse [États-Unis]

Source :

RBID : pubmed:31539379

Descripteurs français

English descriptors

Abstract

Many disease resistance genes that have been transferred from wild relatives to cultivated wheat have played a significant role in wheat production worldwide. Ae. umbellulata is one of the species within the genus Aegilops that have been successfully used as sources of resistance genes to leaf rust, stem rust and powdery mildew. The objectives of the current work was to validate the map position of a major QTL that confers resistance to the stem rust pathogen races Ug99 (TTKSK) and TTTTF with an independent bi-parental mapping population and to refine the QTL region with a bulk segregant analysis approach. Two F2 bi-parental mapping populations were developed from stem rust resistant Ae. umbellulata accessions (PI 298905 and PI 5422375) and stem rust susceptible accessions (PI 542369 and PI 554395). Firstly, one of the two populations was used to map the chromosome location of the resistance gene. Later on, the 2nd population was used to validate the chromosome location in combination with a bulk segregant analysis approach. For the bulk segregant analysis, RNA was extracted from a bulk of leaf tissues of 12 homozygous resistant F3 families, and a separate bulk of 11 susceptible homozygous F3 families derived from the PI 5422375 and PI 554395 cross. The RNA samples of the two bulks and the two parents were sequenced for SNPs identification. Stem rust resistance QTL was validated on chromosome 2U of Ae. umbellulata in the same region in both populations. With bulk segregant analysis, the QTL position was delimited within 3.2 Mbp. Although there were a large number of genes in the orthologous region of the detected QTL on chromosome 2D of Ae. tauschii, we detected only two Ae. umbellulata NLR genes which can be considered as a potential candidate genes.

DOI: 10.1371/journal.pone.0215492
PubMed: 31539379
PubMed Central: PMC6754143


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat.</title>
<author>
<name sortKey="Edae, Erena A" sort="Edae, Erena A" uniqKey="Edae E" first="Erena A" last="Edae">Erena A. Edae</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rouse, Matthew N" sort="Rouse, Matthew N" uniqKey="Rouse M" first="Matthew N" last="Rouse">Matthew N. Rouse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cereal Disease Laboratory, United State Department of Agriculture-Agricultural Service, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cereal Disease Laboratory, United State Department of Agriculture-Agricultural Service, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31539379</idno>
<idno type="pmid">31539379</idno>
<idno type="doi">10.1371/journal.pone.0215492</idno>
<idno type="pmc">PMC6754143</idno>
<idno type="wicri:Area/Main/Corpus">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000139</idno>
<idno type="wicri:Area/Main/Curation">000139</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000139</idno>
<idno type="wicri:Area/Main/Exploration">000139</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat.</title>
<author>
<name sortKey="Edae, Erena A" sort="Edae, Erena A" uniqKey="Edae E" first="Erena A" last="Edae">Erena A. Edae</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rouse, Matthew N" sort="Rouse, Matthew N" uniqKey="Rouse M" first="Matthew N" last="Rouse">Matthew N. Rouse</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Cereal Disease Laboratory, United State Department of Agriculture-Agricultural Service, St. Paul, Minnesota, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Cereal Disease Laboratory, United State Department of Agriculture-Agricultural Service, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aegilops (genetics)</term>
<term>Aegilops (immunology)</term>
<term>Aegilops (microbiology)</term>
<term>Basidiomycota (pathogenicity)</term>
<term>Disease Resistance (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aegilops (génétique)</term>
<term>Aegilops (immunologie)</term>
<term>Aegilops (microbiologie)</term>
<term>Basidiomycota (pathogénicité)</term>
<term>Gènes de plante (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Résistance à la maladie (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Aegilops</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aegilops</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Aegilops</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Aegilops</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Aegilops</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Aegilops</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Disease Resistance</term>
<term>Genes, Plant</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes de plante</term>
<term>Locus de caractère quantitatif</term>
<term>Résistance à la maladie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many disease resistance genes that have been transferred from wild relatives to cultivated wheat have played a significant role in wheat production worldwide. Ae. umbellulata is one of the species within the genus Aegilops that have been successfully used as sources of resistance genes to leaf rust, stem rust and powdery mildew. The objectives of the current work was to validate the map position of a major QTL that confers resistance to the stem rust pathogen races Ug99 (TTKSK) and TTTTF with an independent bi-parental mapping population and to refine the QTL region with a bulk segregant analysis approach. Two F2 bi-parental mapping populations were developed from stem rust resistant Ae. umbellulata accessions (PI 298905 and PI 5422375) and stem rust susceptible accessions (PI 542369 and PI 554395). Firstly, one of the two populations was used to map the chromosome location of the resistance gene. Later on, the 2nd population was used to validate the chromosome location in combination with a bulk segregant analysis approach. For the bulk segregant analysis, RNA was extracted from a bulk of leaf tissues of 12 homozygous resistant F3 families, and a separate bulk of 11 susceptible homozygous F3 families derived from the PI 5422375 and PI 554395 cross. The RNA samples of the two bulks and the two parents were sequenced for SNPs identification. Stem rust resistance QTL was validated on chromosome 2U of Ae. umbellulata in the same region in both populations. With bulk segregant analysis, the QTL position was delimited within 3.2 Mbp. Although there were a large number of genes in the orthologous region of the detected QTL on chromosome 2D of Ae. tauschii, we detected only two Ae. umbellulata NLR genes which can be considered as a potential candidate genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31539379</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat.</ArticleTitle>
<Pagination>
<MedlinePgn>e0215492</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0215492</ELocationID>
<Abstract>
<AbstractText>Many disease resistance genes that have been transferred from wild relatives to cultivated wheat have played a significant role in wheat production worldwide. Ae. umbellulata is one of the species within the genus Aegilops that have been successfully used as sources of resistance genes to leaf rust, stem rust and powdery mildew. The objectives of the current work was to validate the map position of a major QTL that confers resistance to the stem rust pathogen races Ug99 (TTKSK) and TTTTF with an independent bi-parental mapping population and to refine the QTL region with a bulk segregant analysis approach. Two F2 bi-parental mapping populations were developed from stem rust resistant Ae. umbellulata accessions (PI 298905 and PI 5422375) and stem rust susceptible accessions (PI 542369 and PI 554395). Firstly, one of the two populations was used to map the chromosome location of the resistance gene. Later on, the 2nd population was used to validate the chromosome location in combination with a bulk segregant analysis approach. For the bulk segregant analysis, RNA was extracted from a bulk of leaf tissues of 12 homozygous resistant F3 families, and a separate bulk of 11 susceptible homozygous F3 families derived from the PI 5422375 and PI 554395 cross. The RNA samples of the two bulks and the two parents were sequenced for SNPs identification. Stem rust resistance QTL was validated on chromosome 2U of Ae. umbellulata in the same region in both populations. With bulk segregant analysis, the QTL position was delimited within 3.2 Mbp. Although there were a large number of genes in the orthologous region of the detected QTL on chromosome 2D of Ae. tauschii, we detected only two Ae. umbellulata NLR genes which can be considered as a potential candidate genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Edae</LastName>
<ForeName>Erena A</ForeName>
<Initials>EA</Initials>
<Identifier Source="ORCID">0000-0003-0892-0285</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rouse</LastName>
<ForeName>Matthew N</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cereal Disease Laboratory, United State Department of Agriculture-Agricultural Service, St. Paul, Minnesota, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000078065" MajorTopicYN="N">Aegilops</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="Y">Disease Resistance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31539379</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0215492</ArticleId>
<ArticleId IdType="pii">PONE-D-19-07071</ArticleId>
<ArticleId IdType="pmc">PMC6754143</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 Jul 1;22(13):1658-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1682921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Sep;37(16):e106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19528076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Sep 1;25(17):2283-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mamm Genome. 2010 Dec;21(11-12):592-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2011 May;122(8):1537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 May 15;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2011 Jul;19(5):669-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21728140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jan 26;12:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22280551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Feb 15;13:75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22336098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22586469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 May;126(5):1179-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23377571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):783-786</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23811222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Jul 09;14:465</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23837739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2013 Oct;126(10):2477-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23864229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 06;8(12):e82333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Aug 1;30(15):2114-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24695404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2015 Jun;13(5):613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25382230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Nov 24;5:641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25505474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Dec 04;5:692</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25538723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 May 15;31(10):1665-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25586514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jul;105(7):872-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26120730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Oct;14(10):1941-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26990124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Dec 15;17(1):1039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27978816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 May 5;7(5):1551-1561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28364036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):E9483-E9492</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Nov 23;551(7681):498-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29143815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2011 Jun;95(6):762-766</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30731910</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Minnesota">
<name sortKey="Edae, Erena A" sort="Edae, Erena A" uniqKey="Edae E" first="Erena A" last="Edae">Erena A. Edae</name>
</region>
<name sortKey="Rouse, Matthew N" sort="Rouse, Matthew N" uniqKey="Rouse M" first="Matthew N" last="Rouse">Matthew N. Rouse</name>
<name sortKey="Rouse, Matthew N" sort="Rouse, Matthew N" uniqKey="Rouse M" first="Matthew N" last="Rouse">Matthew N. Rouse</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000257 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000257 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31539379
   |texte=   Bulked segregant analysis RNA-seq (BSR-Seq) validated a stem resistance locus in Aegilops umbellulata, a wild relative of wheat.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31539379" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 09:39:13 2020. Site generation: Fri Nov 20 09:41:54 2020